Search results

Search for "electric conductivity" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • ; thin films; Introduction Most polymers can be classified as organic dielectrics. However, there exists a specific class of polymers, typically characterized by the existence of conjugated π-bonds, which enable delocalization of electrons leading to electric conductivity in the ground state of the
  • system. Relatively recently it was found that finite electric current can pass also through non-conjugated polymers. In the ground state they are wide-band dielectrics, but can exhibit high electric conductivity under the influence of such external parameters as mechanical stress and/or electric field [1
  • ]. The effect is interpreted as stimulation of metallic state [2]. Poly(diphenylene phthalide) (PDP) was chosen as the object of study being a representative electro-active polymer demonstrating induced electric conductivity. PDP is a carbocyclic polymer with high chemical and thermal stability
PDF
Album
Full Research Paper
Published 19 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • been developed to increase the absorption of visible solar light [6][7]. Notably, carbon nanotubes (CNTs) are a promising material for visible-light absorption [8]. A combination of TiO2 with CNTs can effectively enhance the separation of e−/h+ pairs based on the high electric conductivity of CNTs
PDF
Album
Full Research Paper
Published 14 Dec 2022

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • , HIM and Raman spectroscopy were performed on the samples after the EFTEM experiments. The SE image in Figure 7b shows that membrane turned brighter in the areas previously imaged with EFTEM, which is indicative of a higher electric conductivity, as demonstrated in the following. In Figure 7c, a Raman
PDF
Album
Full Research Paper
Published 26 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • accommodation of cations between the 2D MXene layers [38]. MXenes with a 2D lamellar structure also have good electric conductivity, hydrophilic surface properties, and they can intercalate different cations between their layers. There is still great room for further research on MXene-related energy storage
PDF
Album
Review
Published 13 Jan 2021

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • , due to their excellent physical and chemical properties (e.g., high surface area, excellent thermal and electric conductivity, high mechanical strength)[19][20][21]. Examples of graphene nanomaterials include single-layer graphene, few-layer graphene (FLG), graphene oxide (GO), and the reduced form of
PDF
Album
Full Research Paper
Published 17 Jul 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • and stable materials are highly needed. Metal-free carbon materials, single- or multi-doped with N, B, P, S, halogens, Si or Se, have turned out to be promising ORR catalysts [1][2][3][4][5][6]. N-doped carbon materials show promising ORR activities along with high electric conductivity, in addition
PDF
Album
Full Research Paper
Published 02 Jan 2020

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • reservoir as positive pole was a cylinder with a diameter of 40 mm and a height of 30 mm, the bulk conductivity of copper was set to 5.8 × 1011 µs/cm, the electric conductivity of the polymer nozzles in the MBE was 0 µs/cm, the electric conductivity of the PAN-DMF solution with a concentration of 10 wt
PDF
Album
Full Research Paper
Published 15 Nov 2019

Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube

  • Mandula Buren,
  • Yongjun Jian,
  • Yingchun Zhao,
  • Long Chang and
  • Quansheng Liu

Beilstein J. Nanotechnol. 2019, 10, 1628–1635, doi:10.3762/bjnano.10.158

Graphical Abstract
  • nanotube, the net electric current over the cross section of the nanotube is zero, i.e., where σ = 2z2e2Dn0/(kBT) is the electric conductivity and D is the diffusivity of ions in the electrolyte. From the equation Is + Ic=0, the streaming electric field Es can be obtained in the form: Dimensionless
PDF
Album
Full Research Paper
Published 06 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • the other two materials. This can be attributed to a low electric conductivity of the electrodes accompanied with the lower ionic conductivity of such electrolytes. This causes a higher resistance of the whole device and results in a lower rate capability. The difference of the electrode
  • conductivities is also shown in the Nyquist plot (Figure 4C). A higher nitrogen content reduces the electric conductivity of the electrodes and thus, does not have a beneficial influence on the supercapacitor performance. Conclusion We introduced an upcycling process for plastic waste to produce N-doped carbon
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Dielectric properties of a bisimidazolium salt with dodecyl sulfate anion doped with carbon nanotubes

  • Doina Manaila Maximean,
  • Viorel Cîrcu and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 164–174, doi:10.3762/bjnano.9.19

Graphical Abstract
  • functions. As a result of doping the ILC with CNT, the electric conductivity increases significantly. Ionic conductivity is dominant and it was indirectly observed through the electrode polarization (EP) effect. The very high dielectric permittivity values and the decrease of the electric conductivity at
  • interface. Experimental data can be presented either by means of the complex dielectric function or of electric conductivity. The AC conductivity σ*(ω) is a complex function: In agreement with Maxwell’s equations, a direct general relationship can be established between the electrical conductivity and the
  • movements in the bulk of the electrolyte. At low frequencies (10−1–103 Hz), approximately region 1 in Figure 11, the behavior is controlled by “electrode polarization” effects. Thus, the electric conductivity decreases significantly when the frequency decreases. In the frequency range below 100 MHz, the
PDF
Album
Full Research Paper
Published 16 Jan 2018

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • successive Si layers [23][24][25][26], with an interlayer spacing of ≈3Å. Such layers display an electronic band structure, measured by ARPES, that has been interpreted as a Dirac cone located 0.25 eV below the Fermi level [27]. These layers present a metallic behavior, with an electric conductivity one
PDF
Album
Full Research Paper
Published 05 Jan 2018

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • great challenge because the low electric conductivity of MnO results in poor cycling stability and inferior rate capability. A long-term stable, nano-architecture of graphene-supported MnO NPs for LIB applications has been prepared by cycling where the oxidation of Mn(II) to Mn(III) and interfacial
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • between deposited V2O5 and graphene. Keywords: ammonia; electric conductivity; gas sensor; graphene; pulsed laser deposition; UV light activation; vanadium(V) oxide; Introduction Graphene, being a thin (semi)conducting material, is a promising gas sensing system. Highly sensitive response, down to
PDF
Album
Full Research Paper
Published 07 Mar 2017

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • profiling; helium ion microscopy; ion bombardment; numerical simulations; polymers; SDTRIMSP; Introduction Ion bombardment of polymer samples has been studied for various applications related to surface modifications and surface analysis. Ion bombardment of polymers allows to change the electric
  • conductivity of polymers [1]. A reduction of the band gap along with increasing photo- and electrical conductivity is observed for C+ implantation into poly(methyl methacrylate) (PMMA), which is related to the formation of carbon clusters with a polyaromatic structure [2]. Potential applications include
PDF
Album
Full Research Paper
Published 17 Nov 2016

Fast diffusion of silver in TiO2 nanotube arrays

  • Wanggang Zhang,
  • Yiming Liu,
  • Diaoyu Zhou,
  • Hui Wang,
  • Wei Liang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2016, 7, 1129–1140, doi:10.3762/bjnano.7.105

Graphical Abstract
  • structures, TiO2 nanotubes (TNT) seem to be an ideal candidate for the applications in energy storage and photovoltaics. The intrinsic poor electric conductivity and large bandgaps (approx. 3.4 eV for anatase TiO2 [18] and approx. 3.0 eV for rutile TiO2 [19][20]) have limited the applications of TiO2 of low
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Charge injection and transport properties of an organic light-emitting diode

  • Peter Juhasz,
  • Juraj Nevrela,
  • Michal Micjan,
  • Miroslav Novota,
  • Jan Uhrik,
  • Lubica Stuchlikova,
  • Jan Jakabovic,
  • Ladislav Harmatha and
  • Martin Weis

Beilstein J. Nanotechnol. 2016, 7, 47–52, doi:10.3762/bjnano.7.5

Graphical Abstract
  • steady-state current–voltage characteristics recorded at various temperatures have been used to evaluate the activation energy of electric conductivity. Obtained results are compared with energy band diagram to identify major energy barriers limiting the current. Experimental The study of the charge
PDF
Album
Full Research Paper
Published 14 Jan 2016

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • Libowitz et al. [29][30] metallic, covalent and ionic hydrides can be identified. Given the fact that the electric behavior is an important parameter for the electrochemical reaction, the issue of the poor electric conductivity of ionic and iono-covalent hydrides must be solved. For instance, the ionic
PDF
Album
Review
Published 31 Aug 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • , electric conductivity κ and inter-diffusion coefficient D have to be positive. The equations of motion reduce to The equation for the temperature follows from the entropy equation (Equation 64) by using where cp is specific heat per unit mass. With the thermodynamic relation and the continuity equation
PDF
Album
Full Research Paper
Published 20 Apr 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • explanation. Functionality In the following a two-step approach is followed: First, the surface potential, which reflects the chemical composition and its electronic properties, and, subsequently, the electric conductivity are mapped. The combination of both measurements allows one then to derive the scaling
  • central PtC deposit. This is further supported by the tapping phase signal (central plot in Figure 3c) that suggests different mechanical properties for the outer halo. As KFM is not able to reveal the electric conductivity, conductive-AFM (C-AFM) measurements were carried out. For that, FEBID structures
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • . Carbon nanoparticle matrix The electric conductivity measurements were performed for activated carbon fibers (ACFs) formed from the quasi-graphitic CNs, which are mechanically connected by carbon chains or graphene fragments [36]. It was shown that the conductivity of such a system depends on the thermal
PDF
Album
Review
Published 13 Oct 2014
Graphical Abstract
  • serving as chemically inert and stable and electrically conducting substrate, which in turn is deposited on a Si prism. The Au films have to be thin enough to be FTIR transparent and thick enough to exhibit sufficient electric conductivity and fully cover the Si substrate. The gold thin film was prepared
PDF
Album
Full Research Paper
Published 28 May 2014

Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films

  • Sebastian Schnurr,
  • Ulf Wiedwald,
  • Paul Ziemann,
  • Valeriy Y. Verchenko and
  • Andrei V. Shevelkov

Beilstein J. Nanotechnol. 2013, 4, 461–466, doi:10.3762/bjnano.4.54

Graphical Abstract
  • non-linear temperature dependence of the Seebeck coefficients S(T) below typically 100 K in crystalline samples, are expected to be absent. Furthermore, with any ‘sharp’ features in the electronic density of states smeared out by structural disorder, the logarithmic derivative of electric conductivity
PDF
Album
Full Research Paper
Published 31 Jul 2013

Synthesis and thermoelectric properties of Re3As6.6In0.4 with Ir3Ge7 crystal structure

  • Valeriy Y. Verchenko,
  • Anton S. Vasiliev,
  • Alexander A. Tsirlin,
  • Vladimir A. Kulbachinskii,
  • Vladimir G. Kytin and
  • Andrei V. Shevelkov

Beilstein J. Nanotechnol. 2013, 4, 446–452, doi:10.3762/bjnano.4.52

Graphical Abstract
  • paramagnetic impurities, the conspicuous increase in χ above 80 K does not conform to the Pauli paramagnetism and reflects deviations of S1 from a simple metal. Figure 7 compiles the plots of the electric conductivity (σ), Seebeck coefficient (S), thermal conductivity (κ), and ZT in the temperature range of 77
PDF
Album
Full Research Paper
Published 17 Jul 2013
Other Beilstein-Institut Open Science Activities